Strategies to compute

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]
$$

1. Try plugging in the value.

If denominator $\neq 0$, done!
2. If denom $=\mathbf{0} \&$ numerator $\neq \mathbf{0}$, the answer is $-\infty,+\infty$ or DNE. Examine the sign of the output from each side.
3. If denom $=\mathbf{0} \&$ numerator $=\mathbf{0}$, Use algebraic methods discussed in class to simplify and cancel until one of them is not zero.

Here is a summary of algebra methods we discussed for the $3^{\text {rd }}$ case:
Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions
Strategy 3: Expand/Simplify
Strategy 4: Multiply by Conjugate

Strategy 5: Change Variable (Optional)
Strategy 6: Compare to other functions
(Squeeze Thm)

Special note:
If the problem starts as two fractions, combine them into one.

Strategies to compute
$\lim _{x \rightarrow \infty} f(x)$

1. Is it a known limit?

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{1}{x^{a}}=0, \quad \text { if } a>0 \\
\lim _{x \rightarrow \infty} e^{-x}=0, \lim _{x \rightarrow \infty} \ln (x)=\infty, \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}
\end{gathered}
$$

2. Use algebra to rewrite it in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^{a}}$, where a is the largest power.
Strategy 2: Multiply top/bottom by $\mathrm{e}^{-\mathrm{rx}}$.
Strategy 3: Multiply by conjugate.
Strategy 4: Combine Fractions.

Special note:
If there is a radical you may have to rewrite x under a radical.
If x is positive, then $x=\sqrt{x^{2}}$. If x is negative, then $x=-\sqrt{x^{2}}$.

